Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trop Biomed ; 37(2): 513-535, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33235398

RESUMO

After a centenary fight against malaria, Brazil has seen an opportunity for change with the proposal of the malaria elimination policy set by the Brazilian government, in line with malaria elimination policies in other Latin American countries. Brazilian malaria experts regard eliminating malaria by 2030 to be within reach. Herein we evaluated the likelihood that malaria elimination can be accomplished in Brazil through systematic review of the literature on malaria elimination in Brazil and epidemiological analysis. Fifty-two articles referring to malaria eradication/elimination in Brazil were analyzed to identify challenges and technological breakthroughs for controlling malaria. Monthly deaths (1979-2016) and monthly severe malaria cases (1998-2018) were analyzed according to age groups, geographic region and parasite species. As a result, we observed that the declining malaria burden was mostly attributable to a decline in Plasmodium falciparum-malaria. At the same time, the proportional increase of Plasmodium vivax-malaria in comparison with P. falciparum-malaria was notable. This niche replacement mechanism was discussed in the reviewed literature. In addition, the challenges to P. vivax-malaria elimination outnumbered the available technological breakthroughs. Although accumulated and basic information exists on mosquito vector biology, the lack of specific knowledge about mosquito vector taxonomy and ecology may hamper current attempts at stopping malaria in the country. An impressive reduction in malaria hospitalizations and mortality was seen in Brazil in the past 3 decades. Eliminating malaria deaths in children less than 5 years and P. falciparum severe cases may be achievable goals under the current malaria policy until 2030. However, eliminating P. vivax malaria transmission and morbidity seems unattainable with the available tools. Therefore, complete malaria elimination in Brazil in the near future is unlikely.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Malária/epidemiologia , Brasil/epidemiologia , Erradicação de Doenças , Humanos , Malária/parasitologia , Malária/prevenção & controle , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Políticas
2.
Tropical Biomedicine ; : 513-535, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-823262

RESUMO

@#After a centenary fight against malaria, Brazil has seen an opportunity for change with the proposal of the malaria elimination policy set by the Brazilian government, in line with malaria elimination policies in other Latin American countries. Brazilian malaria experts regard eliminating malaria by 2030 to be within reach. Herein we evaluated the likelihood that malaria elimination can be accomplished in Brazil through systematic review of the literature on malaria elimination in Brazil and epidemiological analysis. Fifty-two articles referring to malaria eradication/elimination in Brazil were analyzed to identify challenges and technological breakthroughs for controlling malaria. Monthly deaths (1979–2016) and monthly severe malaria cases (1998–2018) were analyzed according to age groups, geographic region and parasite species. As a result, we observed that the declining malaria burden was mostly attributable to a decline in Plasmodium falciparum-malaria. At the same time, the proportional increase of Plasmodium vivax-malaria in comparison with P. falciparum-malaria was notable. This niche replacement mechanism was discussed in the reviewed literature. In addition, the challenges to P. vivax-malaria elimination outnumbered the available technological breakthroughs. Although accumulated and basic information exists on mosquito vector biology, the lack of specific knowledge about mosquito vector taxonomy and ecology may hamper current attempts at stopping malaria in the country. An impressive reduction in malaria hospitalizations and mortality was seen in Brazil in the past 3 decades. Eliminating malaria deaths in children less than 5 years and P. falciparum severe cases may be achievable goals under the current malaria policy until 2030. However, eliminating P. vivax malaria transmission and morbidity seems unattainable with the available tools. Therefore, complete malaria elimination in Brazil in the near future is unlikely.

3.
Int J Parasitol ; 30(12-13): 1395-405, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11113264

RESUMO

Ecological disturbances exert an influence on the emergence and proliferation of malaria and zoonotic parasitic diseases, including, Leishmaniasis, cryptosporidiosis, giardiasis, trypanosomiasis, schistosomiasis, filariasis, onchocerciasis, and loiasis. Each environmental change, whether occurring as a natural phenomenon or through human intervention, changes the ecological balance and context within which disease hosts or vectors and parasites breed, develop, and transmit disease. Each species occupies a particular ecological niche and vector species sub-populations are distinct behaviourally and genetically as they adapt to man-made environments. Most zoonotic parasites display three distinct life cycles: sylvatic, zoonotic, and anthroponotic. In adapting to changed environmental conditions, including reduced non-human population and increased human population, some vectors display conversion from a primarily zoophyllic to primarily anthrophyllic orientation. Deforestation and ensuing changes in landuse, human settlement, commercial development, road construction, water control systems (dams, canals, irrigation systems, reservoirs), and climate, singly, and in combination have been accompanied by global increases in morbidity and mortality from emergent parasitic disease. The replacement of forests with crop farming, ranching, and raising small animals can create supportive habitats for parasites and their host vectors. When the land use of deforested areas changes, the pattern of human settlement is altered and habitat fragmentation may provide opportunities for exchange and transmission of parasites to the heretofore uninfected humans. Construction of water control projects can lead to shifts in such vector populations as snails and mosquitoes and their parasites. Construction of roads in previously inaccessible forested areas can lead to erosion, and stagnant ponds by blocking the flow of streams when the water rises during the rainy season. The combined effects of environmentally detrimental changes in local land use and alterations in global climate disrupt the natural ecosystem and can increase the risk of transmission of parasitic diseases to the human population.


Assuntos
Ecossistema , Doenças Parasitárias/transmissão , Zoonoses , Animais , Humanos , Doenças Parasitárias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...